Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of $LiCoO_2$ for advanced, safe lithium-ion batteries Junyoung Mun^{1,2*}, Taeeun Yim^{1,3*}, Jang Hoon Park⁴, Ji Heon Ryu⁵, Sang Young Lee⁴, Young Gyu Kim¹, & Seung M. Oh¹ Correspondence and requests for materials should be addressed to S.M.O. (seungoh@snu.ac.kr) ¹Department of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea ²Energy and Chemical Engineering, Incheon National University, Incheon 406-840, Korea ³Advanced Batteries Research Center, KETI, Gyunggi-do 463-816, Korea ⁴School of Green Energy, UNIST, Ulsan 689-798, Korea ⁵Graduate School of Knowledge-based Technology, Korea Polytechnic University, Gyunggi-do 429-793, Korea ^{*}these authors contributed equally to this work Figure S1. The radical stabilization mechanism on the 1-allyl-1-methylpiperidinium cation of room temperature ionic liquid. Figure S2. Cyclic voltammograms obtained with a working electrode of glassy carbon in the PMPip-TFSI and AMPip-TFSI (scan rate : 10 mV s⁻¹, temperature: 25 $\,^{\circ}$ C)